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THE BC RINGS OF TAXOL BY [4+4] PHOTOCYCLOADDITION
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Abstract: Intramolecular photocycloaddition of 2-pyridones joined by a four-carbon chain will
form the fused 8-6 ring system of taxol with both of the quaternary carbons. A C-7 silyloxy group
on the tether fully controls stereogenesis to give the photoproduct as a single isomer.

Among the numerous synthetic strategies for the total synthesis of taxol (1),! construction of eight-
membered rings2 by intramolecular [4+4] cycloaddition® and equivalent transformations? has received modest
attention. In an earlier report we noted the formation of 8-6 fused carbocycles in the irradiation of four-carbon
tethered pyridones (e.g., 2, equation 2).> Only trans isomers were observed in this photoisomerization, but
stereogenic control by the tether alcohol at C-4 (taxol numbering) was poor.

Adapting this reaction for the synthesis of taxol required a methyl group at C-15 and a higher degree of
stereogenic control. Toward this objective we have prepared 3, incorporating the methyl group and a ter-
butyldimethylsilyloxy group at C-7. In the case of a three-carbon tether, a silyloxy group at this position was
found to give a high degree of stereogenic control.b

(1)

()

We also clected to incorporate a methoxy substituent on one of the
pyridones. The methoxy group differentiates the two alkenes in the [4+4]
product and alkoxy pyridones are readily prepared (see Scheme 1).
However, the use of alkoxy pyridones is potentially troublesome as Kaneko
has reported that 4-alkoxy-2-pyridones do rot undergo [4+4] photodimer-
ization.” The suitability of 4-alkoxy-2-pyridones for [4+4] photocyclo-
addition with different pyridones, as in 3, has not been investigated.
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The synthesis of photosubstrate 3 is shown in Scheme 1. Condensation of the dianion8 of the
commercially available 4 with butyrolactone yields a diketoester intermediate that is conveniently carried on
without purification. Treatment with methanolic methylamine at reflux gives tetrasubstituted pyridone § in
55% overall yield after column chromatography. Methylation of the 4-hydroxy group was effected with
dimethylsulfate and potassium hydroxide (71%) and the primary alcohol was then converted to iodide 6 via
the mesylate (88%).

The lithium anion of cyanohydrin 7,? prepared from the commercially available 2-chloronicotinic acid, is
readily alkylated with iodide 6 in the presence of DMPU. Aqueous workup, incorporating both acid and base
treatment, gives ketone 8 (65%). N-methylation of 8 with dimethylsulfate and basic aqueous workup serves to
generate the second pyridone (58%). Reduction of the ketone and protection as the rert-butyldimethylsilyl
cther yields 3 (84%).
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Irradiation of 3 under standard conditions® (0.05 M in methanol, 450W medium-pressure mercury lamp)
was initially followed by TLC, but did not indicate conversion of starting material. Nevertheless, inspection
by 'H NMR showed complete and very clean conversion of 3 into [4+4] product 9, apparently as a single
isomer: each of the seven well-resolved methyl groups were sharp singlets.!? The sensitivity of photoproduct
9, and the difficulty with TLC analysis, was manifest when column chromatography (silica gel, 95:5
methylene chloride/methanol) gave a near-quantitative recovery of 3.

Removing unsaturation in 9 prevents a reversion to pyridones, thereby stabilizing the photoproduct.
Thus, hydrogenation followed by silica gel chromatography gave 10 as a colorless solid (84% from 3).

Scheme 2.
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An X-ray structure!! of 10 confirmed the Figure 1. X-ray structure of 10
proposed trans, anti® stereochemistry. Remark-
ably, the cyclohexane ring was found to be in a
boat conformation with the zerr-butyldimethyl-
silyloxy group at the flagpole position!

The rigid [6.2.21.6.22:5] photoproduct of 2-
pyridone photodimerization requires that four of
the six atoms of the cyclohexane ring in 9 and
10 be planar, much like cyclohexene.
Cyclohexene, however, exists as a half-chair,
with the boat conformation more than 5
kcal/mol higher in energy.!2 To probe this point
further, the conformations of the parent system
of 9 was examined by molecular mechanics (Figure 2). For this structure, two nonequivalent conformations
for both the boat and the half-chair are possible. MM3* and MM2* calculations!? for these four isomers
found both of the boat conformations to be more stable than either of the half-chairs, with the half-chairs (TIL
and IV) 4-6 kcal/mol above the lowest energy boat form (I). The enthalpy for conformation IV was not found
by MM3*, as this structure minimized to I. The preference for boat over half-chair in these structures is likely
due, in part, to the hybridization of the ring fusion carbons and the resulting bond angles for the cyclohexane
at these centers (109° and 111°) which are quite different from those of boat cyclohexene (119°, MM3%). A
preference of boat over half-chair for these photoproducts may be general.l4

Figure 2. Calculated relative enthalpies of conformers in kcal/mol.

MM3* 0 1.41 6.07 —_—

MM2* Q 1.21 6.99 4.00

Photocycloaddition of 3 is the first example of the formation of a single diastereomeric product from the
intramolecular [4+4] photocycloaddition of 2-pyridones.5613 It is also notable for the first use of 4-alkoxy-2-
pyridones in a [4+4] cycloaddition reaction. Further studies of the chemistry of photoproduct 9 are underway
and will be reported in due course.
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